APRIL	UNIT-I	1. FUNDAMENTAL OF CONTROL SYSTEM	4
		1.1. Classification of Control system	
		1.2. Open loop system & Closed loop system and its comparison	
		1.3. Effects of Feed back	
		1.4. Standard test Signals(Step, Ramp, Parabolic, Impulse	
		Functions)	
		1.5. Servomechanism	
APRIL	UNIT-II	2. MATHEMATICAL MODEL OF A SYSTEM	4
		2.1. Transfer Function & Impulse response,	
		2.2. Properties, Advantages & Disadvantages of Transfer	
		Function	
		2.3. Poles & Zeroes of transfer Function	
		2.4. Simple problems of transfer function of network.	
		2.5. Mathematical modeling of Electrical Systems(R, L, C,	
APRIL		Analogous systems) 3. CONTROL SYSTEM COMPONENTS	1
APRIL	UNIT-III		4
		3.1. Components of Control System	
		3.2. Gyroscope, Synchros, Tachometer, DC servomotors, Ac Servomotors.	
MAY	UNIT-IV	4. BLOCK DIAGRAM ALGEBRA & SIGNAL FLOW GRAPHS	8
		4.1. Definition: Basic Elements of Block Diagram	-
		4.2. Canonical Form of Closed loop Systems	
		4.3. Rules for Block diagram reduction	
		4.4. Procedure for of Reduction of Block Diagram	
		4.5. Simple Problem for equivalent transfer function	
		4.6. Basic Definition in Signal Flow Graph & properties	
		4.7. Construction of Signal Flow graph from Block diagram	
		4.8. Mason's Gain formula	
		4.9. Simple problems in Signal flow graph for network	
MAY	UNIT-V	5.TIME RESPONSE ANALYSIS.	10
		5.1 Time response of control system. 5.2 Standard Test signal.	
		5.2.1. Step signal,	
		5.2.2. Ramp Signal	
		5.2.3. Parabolic Signal	
		5.2.4. Impulse Signal	
		5.3 Time Response of first order system with:	
		5.3.1. Unit step response	
		5.3.2. Unit impulse response.	
		5.4 Time response of second order system to the unit step input.	
		5.4.1. Time response of second order system to the diffestep input.	
	1	5.4.2.Derivation of expression for rise time, peak time, peak	
		overshoot, settling time and steady state error.	
		5.4.3. Steady state error and error constants.	

		5.5 Types of control system. [Steady state errors in Type-0, Type-1,		
		Type-2 system]		
		5.6 Effect of adding poles and zero to transfer function. 5.7		
		Response with P, PI, PD and PID controller.		
MAY	UNIT-VI	6. ANALYSIS OF STABILITY BY ROOT LOCUS TECHNIQUE.	10	
		5 . 1 Root locus concept.		
		6 . 2 Construction of root loci.		
		6 . 3 Rules for construction of the root locus.		
		6 . 4 Effect of adding poles and zeros to G(s) and H(s).		
JUNE	UNIT-VII	7. FREQUENCY RESPONSE ANALYSIS.	10	
		7 . 1 Correlation between time response and frequency response. 7.		
		2 Polar plots.		
		7 . 3 Bode plots.		
		7 . 4 All pass and minimum phase system.		
		7.5 Computation of Gain margin and phase margin.7.6 Log		
		magnitude versus phase plot.		
		7.7 Closed loop frequency response.		
JUNE	UNIT- VIII	8. NYQUIST PLOT	10	
		6.1 Principle of argument.		
		6.2 Nyquist stability criterion.		
		6.3 Niquist stability criterion applied to inverse polar plot.		
		6.4 Effect of addition of poles and zeros to G(S) H(S) on the shape		
		of Niquist plot.		
		6.5 Assessment of relative stability.		
		6.6 Constant M and N circle		
		6.7 Nicholas chart.		